
LLNL-TR-680776

Technical Report on Modeling for
Quasispecies Abundance Inference with
Confidence Intervals from Metagenomic
Sequence Data

K. McLoughlin

January 11, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Technical Report on Modeling for 
Quasispecies Abundance Inference with 
Confidence Intervals from Metagenomic 

Sequence Data 

DHS Bioforensics Program 

IAA No.: HSHQPM-13-X-00219 

Principal Investigator and Correspondent  

Kevin McLoughlin 

Lawrence Livermore National Laboratory (LLNL), Livermore, CA 

925-423-5486, mcloughlin2@llnl.gov  

 Submission date: March 4, 2014   

!
This document was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees 
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes.  

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344.  

LLNL-TR-680776



1 Introduction

The overall aim of this project is to develop a software package, called MetaQuant, that can de-
termine the constituents of a complex microbial sample and estimate their relative abundances by
analysis of metagenomic sequencing data. The goal for Task 1 is to create a generative model de-
scribing the stochastic process underlying the creation of sequence read pairs in the data set. The
stages in this generative process include the selection of a source genome sequence for each read
pair, with probability dependent on its abundance in the sample. The other stages describe the evo-
lution of the source genome from its nearest common ancestor with a reference genome, breakage
of the source DNA into short fragments, and the errors in sequencing the ends of the fragments to
produce read pairs.

We use a Bayesian framework to model the generation of read pairs from source genomes. This
means that, rather than simply fitting maximum likelihood estimates for the abundances and other
parameters, we aim to fit a probability distribution for each parameter. This will allow us to estimate
confidence intervals for each abundance level.

2 The eXpress model for RNA-Seq data

MetaQuant’s generative model is inspired in part by the model underlying the RNA-Seq analysis
tool eXpress [1], which is diagrammed in Figure 1. In this graphical model diagram, the circles
represent the random variables (either hidden or observed) and the parameters of their probabil-
ity distributions; the arrows represent conditional dependence relationships. The box surrounding
the four variables on the left indicates that the variables are instantiated N times, once for each
observed read pair. The random variables are the fragment length L, the target genome T , the
fragment start position P , and the observed fragment (read pair) sequence F . The circle for F is
shaded to indicate that it is observed; unshaded circles correspond to hidden variables and param-
eters.

Under the eXpress model, fragments are generated as follows:

• A fragment length l is chosen from the range [1, Lmax] according to a categorical distribu-
tion, with probability λl. Lmax is the maximum expected fragment length, which depends on
the procedure used for shearing cDNA molecules, along with their sequence composition.

• A target (transcript) t is sampled from the set of all possible targets T with probability τ l
t . τ l

t

is determined by the relative abundance of the target ρt and the length of the target sequence
l(t), according to a relation to be described below.

• The fragment starting position p within the target sequence is chosen from the range [1,
l(t)− l + 1], with probability πtl

p . πtl
p depends on the sequence context surrounding position
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p in target t; it describes the tendency for DNA strands to break preferentially at the centers
of particular k-mer sequences.

• The ends of the fragment are sequenced, with substitutions, insertions and deletions produced
randomly by errors in the sequencing process. The probability of producing the observed
read pair sequences f is φptl

f ; it depends primarily on the actual fragment sequence, which is
determined by the target sequence and the fragment position and length.

In the eXpress generative model, the fragment length is selected first. This is somewhat coun-
terintuitive; however, it simplifies the model because it reflects the fact that the target sampling
probabilities τ l

t depend on the target and fragment lengths. Given equal abundances, longer target
sequences are more likely to be sampled, and targets shorter than the fragment length will not be
sampled at all.

The sampling probabilities are also affected by sequence bias, which causes some fragments to
be selected more than others. The sequence bias is described by a set of normalized weights wtl

p ,
which in turn are parameterized by a set of third order Markov chain probabilities specified for each
position in a 21-base window surrounding the fragment start position. Details of how the weights
wtl

p are calculated can be found in [2]. Given the weights, the conditional probability of starting a
fragment at position p is

πtl
p = P[P = p|T = t, L = l] =

wtl
p

�l(t)−l+1
q=1 wtl

q

while the target sampling probability is

τ l
t = P[T = t|L = l] =

ρt
�l(t)−l+1

p=1 wtl
p

�
u∈T ρu

�l(u)−l+1
q=1 wul

q

The probability of producing the observed read pair sequence, φptl
f , is parameterized by sets of

probabilities for insertions or deletions of a given length, and emission probabilities for observing
a base at a particular position given the true bases at the same position and the one preceding
it.

Under the above model, the complete data likelihood given the observed set of fragment read pairs
F = (f1, f2, . . . , fN ) is given by

L(λ, τ, π, φ|F) =
N�

n=1

λlnτ ln
tn πtnln

pn
φpntnln

fn

The eXpress software fits maximum likelihood (ML) estimates for the parameters of the above
model, including the relative abundances, using an online expectation-maximization algorithm [3].
The input data for model fitting are alignments of read pairs to target sequences, produced by a
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tool such as Bowtie or BWA. In the context of model fitting, “online” means that each sequence
read is examined exactly once; there is no need to make multiple passes over the data set, as in the
conventional batch EM algorithm. As a result, online algorithms such as eXpress are much faster
and require much less memory than batch algorithms, especially when applied to the large datasets
produced with high-throughput sequencing. Note that the model parameters describing sequencing
errors, fragmentation bias and fragment length distribution are fit independently for every sequence
dataset; there is no need to store error models for particular sequencers.

3 Limitations of the eXpress model for metagenomic data

While the eXpress model captures many aspects of the stochastic process underlying all types of
high-throughput sequencing data, it was primarily designed for gene expression analysis. There-
fore, it incorporates some assumptions that limit its applicability to metagenomic data:

1. The model assumes that the true target sequences are known; or at least, that they do not
deviate greatly from a known set of reference transcriptome sequences. In a metagenomic
sample, the constituent genomes will almost never be identical to any reference genome se-
quences. At best, some organisms present in the sample may share recent common ancestors
with reference strains of the same species. Therefore, a model for metagenomic data must
allow for evolutionary divergence between the true genomes and the reference genomes.

2. Most mRNA transcripts are relatively short linear sequences, on the order of a few kilobases
in length. Typical fragment lengths are on the order of 300 bp, a substantial fraction of the
target length. Therefore, the fragment length has a significant effect on the target sampling
probability. By contrast, the microbial targets in a metagenomic sample are mostly circular
genomes and plasmids, with lengths ranging from hundreds to thousands of kilobases, so the
target sampling probability is nearly independent of the fragment length.

3. A substantial fraction (on the order of 10-20%) of the possible transcripts may be expressed
in a given tissue sample. Therefore, there is no reason to favor sparse solutions. For metage-
nomic data, by contrast, we expect to see nonzero abundances for only a tiny fraction of the
targets in a reference genome database.

To investigate how eXpress performs on metagenomic data, we used it to analyze a mock com-
munity dataset prepared as a benchmarking standard for the members of the Human Microbiome
Program consortium (HMP) [4, 5]. The dataset was prepared by sequencing a mixture of genomic
DNA from 21 bacterial species and one fungus, in staggered quantities selected to yield specific
numbers of 16S rRNA copies ranging from 1,000 to 1,000,000. The mixture was sequenced on
an Illumina GA II, yielding 7,932,819 75-bp single-end reads; the dataset is available at the NCBI
SRA, under accession SRR172903.
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We used BWA version 0.7.5a-r405 to align the reads to a reference genome database described
in [6], obtained from Washington University, St. Louis (WUSTL). We converted the SAM file
output by BWA into binary (BAM) format, and ran eXpress on the BAM file with default parameter
settings. eXpress assigned nonzero fragment counts to target sequences from 511 distinct microbial
strains. We grouped the strains by genus for the 19 genera represented in the mock community
dataset, and drew bar plots of the relative abundance estimates, expressed as fragments per kilobase
per million reads mapped (FPKM). Figures 2 and 3 show the results for two genera, Bacillus and
Lactobacillus. The red bar in each plot indicates the strain that was actually contained in the mock
community mixture.

For Bacillus, we note that the largest abundance was assigned to the B. cereus strain that was ac-
tually present. However, eXpress also estimated substantial abundances for several other B. cereus

strains and even strains of other Bacillus species. This is happening because a large number of reads
map equally well to the genomes of these different strains; in the absence of other evidence, eX-
press apportions the fragment counts among the multiple genomes. For Lactobacillus, the correct
strain is not even included in the top 5 abundance estimates.

In the mock community sample, all the bacterial strains used had genome sequences that were
included in the reference genome database. Therefore, assumption (1) above is in fact valid for
this dataset, though it will not generally be true for real environmental metagenomic samples. The
main problem with applying the eXpress model to this dataset is assumption (3). For metagenomic
data, we seek to explain the observed set of read sequences using a minimal set of constituent
genomes. In order to do this, we need a modeling approach that encourages sparse solutions,
without imposing an a priori cap on the number of constituents.

Because our ultimate goal is to estimate abundances and other parameters together with confidence
intervals, MetaQuant uses a Bayesian modeling approach. In a Bayesian model, we assume a prior
distribution for each of the parameters; the goal of model fitting is to infer a posterior distribution
for each parameter, given the observed data. Maximum a posteriori (MAP) estimates for the
parameters and confidence intervals then follow directly from the posterior distributions.

4 Target sampling with the Chinese restaurant process

An approach that has become popular in text mining, genome assembly, and other fields is to model
the observed data as being generated by a stochastic procedure known as the Chinese restaurant
process (CRP) [7, 8]. It is based on the metaphor of a Chinese restaurant containing an infinite
number of tables of infinite capacity, in which a series of N customers enters one at a time. The
first customer sits at a table chosen at random. Each succeeding customer sits at an occupied
table with a probability proportional to the number of diners already sitting there; or chooses an
unoccupied table with probability proportional to a parameter α. After n− 1 customers have taken
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seats, if ni is the number of diners sitting at table i, the nth customer sits at some occupied table j
with probability nj

n−1+α , or at an unoccupied table with probability α
n−1+α .

The CRP naturally groups observations into clusters, if we associate customers with observations
and tables with clusters. The parameter α controls the sparsity of the clusters; it can be set large to
produce a large set of small clusters, or set small to produce a small number of large clusters. The
cluster sizes fall off according to a power-law distribution, whose rate parameter depends on α.
Since species populations in complex microbial samples also tend to follow power laws, the CRP
is an atractive approach for modeling relative target abundances.

To turn the CRP into a tractable model for the relative abundances, we use an equivalent formula-
tion called a stick-breaking construction [9]. Imagine that we have a stick of length 1. We sample
a value V1 between 0 and 1 from a Beta(1, α) distribution and break the stick at position V1. Let
g1 = V1 be the length of this portion; then the remainder of the stick has length 1 − V1. Now we
sample a second value V2 from the beta distribution and break off a fraction V2 of the remainder
of the stick; this yields pieces with length g2 = V2(1 − V1) and (1 − V1)(1 − V2). We continue
this process recursively, yielding a series of fragments of length gi = Vi

�i−1
j=1(1 − Vj). It can be

proven that this construction produces an infinite series of gi values that sums to 1, and that these
are equivalent to the sampling probabilities in the CRP.

The CRP can be used to model two different stages in our generative model, as diagrammed in Fig-
ure 4. In the first stage, a “seed” genome S is sampled from a reference database S, with probability
derived from a stick-breaking construction of hidden variables Ui, i = 1, . . . , |S|, with sparsity pa-
rameter α. In the second stage, a target variant T is sampled from a cluster of genomes derived
clonally from the seed genome, according to probabilities generated by another stick-breaking con-
struction of variables Vi, with sparsity parameter β. The number of targets generated from each
seed is unbounded, and the total number of seeds is bounded only by the size of the database |S|;
but the likely values of each number become smaller as the associated CRP sparsity parameters
decrease.

Under this “nested CRP” model, the relative abundances of target sequences ρst are generated
by:

Ui ∼ Beta(1, α) i = 1, 2, . . . , |S|
Vi ∼ Beta(1, β) i = 1, 2, . . .

ρst = Ui(s)

i(s)−1�

j=1

(1− Uj) Vi(t)

i(t)−1�

j=1

(1− Vj)

where i(s) is the index of seed sequence s in the set of all seed sequences S, and i(t) is the index
of target sequence t in the set of all variants of s.
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Each target variant is associated with a phylogenetic distance (branch length) parameter νt, which
is drawn from a Gamma(ζ1, ζ2) distribution. The branch length is used to compute substitution
probabilities between the aligned bases in the reference sequence and the variant sequence, accord-
ing to a continuous time-reversible Markov chain model of molecular evolution [10]. Although it
is unlikely that the variant genomes are descended directly from a reference seed genome, time-
reversible models generate the same probabilities for this scenario as for the more likely scenario in
which the variants and reference seed all derive from a common ancestor. The Markov chain rate
parameters κb1,b2 and equilibrium frequencies θb, for b, b1, b2 ∈ {A, C,G, T} are assumed to
be shared by the variants of each seed genome, though not necessarily between seed genomes. We
will discuss further details of the model for variant sequence evolution in section 6 below.

5 Bayesian modeling of position bias

As in the eXpress model, we want to capture the dependence of the fragment starting position
within the target sequence on the sequence context surrounding the position. This requires us to
go into more detail about how eXpress models position bias, and how this can be translated into
a Bayesian framework. In eXpress, the probability of starting or ending a fragment at a particu-
lar position is assumed to depend on the sequence in a 21-base window centered on that position;
this assumption comes from the empirical observation that certain combinations of bases are more
likely to occur at fragment ends than others. Figure 5, taken from [2], illustrates the observed
sequence biases in a set of paired-end reads from a yeast RNA-Seq experiment. Panel A shows
sequence logos representing the nucleotide distributions in the windows surrounding the 5� and 3�

ends of the fragments. Panel B shows normalized nucleotide distributions, after factoring out differ-
ences in abundance between transcripts, and panel C shows the position-independent background
nucleotide frequencies for the yeast transcriptome. The bias weights wtl

p are shown in panel D;
these are the ratios of the abundance-corrected nucleotide frequencies to the background frequen-
cies at each position p. The actual bias model in eXpress is somewhat more complicated than this,
in that weights are calculated based on a third-order Markov chain model for each position in the
21-base window; the overall weight is a product of tetramer probabilities at each position, divided
by the expected tetramer frequencies.

In MetaQuant, we can follow a similar model, except that we want to infer distributions for the bias
parameters rather than ML estimates. We assume that πtl

p , the probability that a fragment starts at
position p given the target t and fragment length l can be factorized as follows:

πtl
p =

10�

x=−10

ψ5
�

x,t[p+x−3:p+x]ψ
3
�

x,t[p+x+l−4:p+x+l−1]

where t[i : j] is the subsequence of the target between positions i and j inclusive. The parameters
ψ5

�

x,b1b2b3b4
and ψ5

�

x,b1b2b3b4
are grouped into sets of categorical probabilities for each position and
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preceding 3-mer, such that
�

b4∈{A,C,G,T}

ψ5
�

x,b1b2b3b4 = 1

�

b4∈{A,C,G,T}

ψ3
�

x,b1b2b3b4 = 1

To put these into a conjugate Bayesian framework, we specify that each group of parameters
ψ5

�

x,b1b2b3b4
or ψ3

�

x,b1b2b3b4
for b4 ∈ {A, C,G, T} is drawn from a Dirichlet prior distribution with hy-

perparameter 4-vector γ5
�

x,b1b2b3
or γ3

�

x,b1b2b3
respectively. Using a conjugate prior greatly simplifies

the calculations when we fit the model to data using an approach such as variational Bayes.

As in the eXpress model, sequence position bias affects the target sampling probability τ l
t . Longer

sequences are more likely to be sampled, as are sequences with higher fragment selection probabil-
ities. We account for both those effects by making τ l

t ∝ ρst
�

p πtl
p . Normalizing this expression

gives us:

τ l
t =

ρst
�l(t)−l+1

p=1 πtl
p

�
t�∈T ρs� t�

�l(t� )−l+1

p�=1
πt� l

p�

6 Sequence evolution and sequencing errors

As we mentioned earlier, eXpress models variations between reference target sequences and ob-
served read sequences as being entirely due to sequencer errors. We need to account for sequencing
errors in the MetaQuant model as well; however, the modeling is complicated by the fact that some
of the variation is due to evolutionary divergence of the “true” target sequence from the reference
sequence. The true target sequence is not observed directly; it is inferred by grouping the observed
read pairs into clusters that share common sets of variations. The variations between reads within
a cluster are explained by sequencing errors.

To describe the evolution of the target variant sequences from the seed reference sequences, we use
the Tamura-Nei (TN93) model [10, 11]. The TN93 model imposes more restrictions on mutation
rates than the generalized time-reversible (GTR) Markov chain model; but unlike the GTR model,
allows us to express the nucleotide substitution probabilities as closed-form functions of the branch
length νt. It is characterized by three rate parameters, which are different for each seed sequence
s but assumed to be the same for all target variants of s: the general substitution rate κs

S and
parameters κs

R and κs
Y for purines and pyrimidines respectively. Together with the equilibrium

frequencies θs
A, θs

C , θs
G and θs

T , also dependent on the seed sequence s, with θs
A+θs

C +θs
G+θs

T = 1,
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these define the instantaneous rate matrix Rs:

A C G T
A − θs

Aκs
S θs

A(κs
S + κs

R/θs
R) θs

Aκs
S

C θs
Cκs

S − θs
Cκs

S θs
C(κs

S + κs
Y /θs

Y )
G θs

G(κs
S + κs

R/θs
R) θs

Gκs
S − θs

Gκs
S

T θs
T κs

S θs
T (κs

S + κs
Y /θs

Y ) θs
T κs

S −

In the above, θs
R = θs

A + θs
G, θs

Y = θs
C + θs

T , and the diagonal entries are understood to be set so
that each row sums to zero.

The substitution probability matrix ωs(νt) is derived as a matrix exponential: ωs(νt) = eRsνt .
The (i, j) entry ωs

ij(νt) is the conditional probability of finding base j at some position in a target
sequence at branch length νt from the seed, given that the seed sequence has base i at that position.
It can be expressed concisely as:

ωs
ij(νt) = δije

−(κs
i +κs

S)νt +
θs
j�ij�

k θs
k�jk

e−κs
Sνt(1− e−κs

i νt) + θs
j (1− eκs

Sνt)

where κs
i is κs

R or κs
Y according to whether base i is a purine or pyrimidine; δij is the Kronecker

delta (1 if and only if i = j); and �ij is the “Watson-Kronecker” delta (1 if and only if bases i and
j are both purines or both pyrimidines).

To model the production of the observed sequence fragments f from the target sequence t, sub-
ject to sequencing errors, we follow a Bayesian version of the approach used in eXpress. The
probabilities of each type of error - substitutions, insertions and deletions - are defined by sets of
parameters. Given a pair of aligned target and fragment sequences t and f , the substitution param-
eters χS

f [k],t[k−1],t[k] indicate the probability of observing fragment base f [k] at alignment position
k, conditional on the pair of bases t[k− 1 : k] in the target sequence. This formulation is based on
the observation that, for many NGS platforms, miscall error rates depend on the true base as well
as the immediately preceding (5�) base. There are 16 groups of 4 χS

hij parameters, each with the
constraint

�
h χS

hij = 1. Each group of χS
hij parameters is distributed according to a 4-dimensional

Dirichlet prior with hyperparameter ξS
ij . Insertion parameters χI

m are categorical probabilities of
insertions of length m for m ∈ {0, 1, . . . , Imax}, with the constraint that

�Imax
m=0 χI

m = 1. They are
associated with an Imax+1-dimensional Dirichlet prior with hyperparameter ξI . Similarly, deletion
parameters χD

m are categorical probabilities of deletions of length m for m ∈ {0, 1, . . . ,Dmax},
with the constraint that

�Dmax
m=0 χD

m = 1; and are associated with a Dmax +1-dimensional Dirichlet
prior with hyperparameter ξD.

We are now left with the problem of combining genome evolution and sequencing errors into our
generative model. Since the target sequences are not observed directly, we treat them as latent
variables in the model. For now, we will assume that indels in the observed fragment sequences
arise exclusively from sequencing errors rather than from divergence between the seed and target
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sequences; this assumption will be revisited later once we have applied MetaQuant to real datasets
with quasispecies variation. This assumption conveniently allows us to use a common coordinate
system for seed-fragment and target-fragment alignments, an example of which is diagrammed in
Figure 6. Each successive aligned element is assigned an index, as shown in the figure; blocks
of inserted or deleted bases are indexed as atomic elements rather than by their individual base
positions.

If we treat the elements of the seed - target - fragment alignment as being independent of one
another, we can express the conditional probability of observing the fragment sequence as:

φpstl
f ≡

�

k∈P(s,f)

ωs
t[k−1],s[k−1]ω

s
t[k],s[k]χ

S
f [k],t[k−1],t[k]

�

k∈I(s,f)

χI
l(k)

�

k∈D(s,f)

χD
l(k)

where P(s, f) is the set of paired bases in the alignment; I(s, f) is the set of inserted blocks;
D(s, f) is the set of deleted blocks; and l(k) is the length of indel block k.

7 The complete data likelihood

We now have all the ingredients to write down the complete data likelihood, which is the first step
required for model fitting using variational Bayes, EM or other techniques. In terms of conditional
probabilities, it is:

L(l,p, s, t,u,v, ν|F , λ,α, β, ζ, ψ, χ, κ, θ) =
N�

n=1

·P[Ln = ln|λ]

· P[Sn = sn, Tn = tn|Ln = ln,V = v,U = u]
· P[V = v|β]P[U = u|α]
· P[ν = νtn |ζ]
· P[Pn = pn|Sn = sn, Tn = tn, Ln = ln, ψ]
· P[Fn = fn|Pn = pn, Sn = sn, Tn = tn, Ln = ln, ν = νtn , θ, κ, χ]

The conditional probabilities are as follows:

P[Ln = ln|λ] = λln

P[Pn = pn|Tn = tn, Ln = ln, ψ] ≡ πtnln
pn

=
10�

x=−10

ψ5
�

x,tn[pn+x−3:pn+x]ψ
3
�

x,tn[pn+x+ln−4:pn+x+ln−1]
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P[Sn = sn, Tn = tn|Ln = ln,V = v,U = u] ≡ τ ln
tn

=
ρsntn

�l(tn)−ln+1
p=1 πtnln

pn

�
s� ,t� ρs� t�

�l(t� )−ln+1

p�=1
πt� ln

p�

ρsntn = Ui(s)

i(s)−1�

j=1

(1− Uj) Vi(t)

i(t)−1�

j=1

(1− Vj)

P[Vi = vi|β] = β(1− Vi)β−1 i = 1, 2, . . .

P[Ui = ui|α] = α(1− Ui)α−1 i = 1, 2, . . . , |S|

P[ν = νtn |ζ] =
1

Γ(ζ1)
ζζ1
2 νζ1−1

tn e−ζ2νtn

P[Fn = fn|Pn = pn, Sn = sn, Tn = tn, Ln = ln, ν = νtn ] ≡ φpnsntnln
fn

=
�

k∈P(s,f)

ωsn
tn[k−1],sn[k−1]ω

sn
tn[k],sn[k]χ

S
fn[k],tn[k−1],tn[k]

�

k∈I(s,f)

χI
l(k)

�

k∈D(s,f)

χD
l(k)

where the substitution matrix elements are given by

ωsn
ij (νtn) = δije

−(κsn
i +κsn

S )νtn +
θsn
j �ij�
k θs

k�jk
e−κsn

S νtn (1− e−κsn
i νtn ) + θsn

j (1− eκsn
S νtn )

8 Next steps

Although the complete data likelihood appears complex, it is a product of (mostly) simple factors,
each based on an exponential family distribution. Therefore, it should be straightforward to express
the complete data log likelihood (CDLL) as a dot product of sufficient statistics and natural param-
eters, plus a log normalizer, and to fit the parameters using an online variational Bayes algorithm.
The only problematic factor is the target sampling probability τ ln

tn , which uses a sum over possible
fragment positions in the target to account for positional bias. We can take a number of approaches
to deal with this; for example, we could alternate fitting the positional bias parameters with fitting
the abundances and target sampling probabilities, in each case leaving the other set of parameters
fixed. This is essentially the eXpress approach. Therefore, the next stage of this project will be
to rewrite a simplified version of the CDLL in exponential family form, with conjugate priors for
the associated parameters, and apply the well-developed machinery of variational Bayes methods
to design an algorithm for fitting posterior distributions for those parameters.
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Figure 2: Abundance estimates for Bacillus strains computed by eXpress for mock community
dataset
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Figure 3: Abundance estimates for Lactobacillus strains computed by eXpress for mock commu-
nity dataset
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Figure 4: Graphical representation of MetaQuant generative model for metagenomic data
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Figure 4.1: Nucleotide distribution surrounding fragment ends and calculation of bias weights.
(A) Sequence logos showing the distribution of nucleotides in a 21bp window surrounding the
ends of fragments from an experiment primed with “not not so random” (NNSR) hexamers
[28]. The 3� end sequences are complemented (but not reversed) to show the sequence of the
primer during first-strand synthesis (see Figure 1.1). The offset is calculated so that 0 is the
“first” base of the end sequence and only non-negative values are internal to the fragment.
Counts were taken only from transcripts mapping to single-isoform genes. (B) Sequence logo
showing normalized nucleotide frequencies after reweighting by initial (not bias corrected)
FPKM in order to account for differences in abundance. (C) The background distribution
for the yeast transcriptome, assuming uniform expression of all single-isoform genes. The
difference in 5� and 3� distributions are due to the ends being primed from opposite strands.
Comparing (C) to (A) and (B) shows that while the bias is confounded with expression
in (A), the abundance normalization reveals the true bias to extend from 5bp upstream
to 5bp downstream of the fragment end. Taking the ratio of the normalized nucleotide
frequencies (B) to the background (C) for the NNSR dataset gives bias weights (D), which
further reveal that the bias is partially due to selection for upstream sequences similar to
the strand tags, namely TCCGATCTCT in first-strand synthesis (which selects the 5� end)
and TCCGATCTGA in second-strand synthesis (which selects the 3� end). Although the
weights here are based on independent frequencies, we found correlations among sites in the
window and take these into account in our full model to produce more informative weights.

Figure 5: Nucleotide distribution surrounding fragment ends in a yeast transcriptome experiment,
and calculation of position bias; from [2].

ACAGCATCAGAGTCA-----GGATCATTCAGGAATAGC
ACCGCATCTGAGTCA-----GGCTCATGCAGGATTAGC

ACCGCATCCGAGTCATAGCCGGCACAT------TTAGC

1  2  3   4  5  6  7  8   9 10 11 12  13 14 15       16        17 18  19 20 21 22 23         24         25 26  27 28 29

seed

target

fragment

Figure 6: Alignment coordinate system for seed, target, and fragment (read) sequences. Each
aligned element (paired bases, deletions or insertions) is assigned an alignment index.
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